Etude Cristallographique du Tellurite de Sodium à Cinq Molécules d'Eau, Na₂Te^{IV}O₃.5H₂O

PAR ETIENNE PHILIPPOT, MAURICE MAURIN ET JACQUES MORET

Laboratoire de Chimie Minérale C, ERA 314, Chimie des Matériaux, Université des Sciences et Techniques du Languedoc, Place Eugène Bataillon, 34060 Montpellier CEDEX, France

(Reçu le 2 octobre 1978, accepté le 5 mars 1979)

Abstract

Na₂TeO₃.5H₂O, $M_r = 311.6$, is monoclinic, space group C2/c, with cell parameters a = 13.468 (2), b = 7.426 (1), c = 17.545 (3) Å, $\beta = 97.79$ (2)°, Z = 8, $D_m = 2.36$ (2) and $D_x = 2.38$ Mg m⁻³. 1994 independent reflexions were used in a full-matrix least-squares refinement; a final R value of 0.026 was obtained. The structure is built up from chains of Na(OH₂)₆ octahedra parallel to the c axis, related by Na atoms in square-planar coordination, NaO₂(OH₂)₂. This structure contains pyramidal TeO₃²⁻ ions with Te-O distances in the range 1.850–1.862 Å and O-Te-O angles close to 99.5°. Positions for the H atoms are proposed.

Introduction

Des études de plus en plus nombreuses et variées sur les composés du tellure(IV) ont montré que l'environnement de cet atome à courte et movenne distance était souvent complexe et relativement dissymétrique du fait de l'activité stéréochimique de la paire libre de cet atome. L'influence stéréochimique des paires libres a été signalée depuis longtemps par Pauling (1960) et Gillespie & Nyholm (1957). Plus récemment, de nombreux auteurs ont essayé de préciser le rôle et la position de cette paire libre; en particulier, Alcock (1972), Gillespie (1972) et Brown (1974), en fonction de l'environnement plus ou moins lointain de l'atome porteur par les atomes voisins. Quelques études récentes sur des phases hydratées: BaTeO₃.H₂O (Rottersten-Nielsen, Grønbæk Hazell & Rasmussen, 1971), Cu(NH₃)TeO₃. H₂O (Johansson & Lindqvist, 1977), CuTeO₃. 2H₂O (Effenberger, 1977) et surtout K₂TeO₃. 3H₂O (Johansson, 1978) semblent indiquer que la symétrie de l'environnement de l'atome de tellure(IV) augmente avec le taux d'hydratation de la phase. Nous avons donc entrepris de vérifier cette hypothèse pour un ensemble de composés hydratés, à cation identique, comme c'est le cas pour les phases présentes dans le ternaire TeO₂-Na₂O-H₂O étudié par

Vorob'eva & Lavut (1958), Lavut & Vorob'eva (1960) et Semenenko & Lavut (1960). Ces auteurs signalent ainsi l'existence d'entités anioniques: TeO_3^{2-} dans $Na_2TeO_3.5H_2O$; $Te_2O_5^{2-}$ dans $Na_2Te_2O_5.3H_2O$; $Te_3O_7^{2-}$ dans $Na_2Te_3O_7.5H_2O$ et enfin $Te_4O_9^{2-}$ dans $Na_2Te_4O_9.5H_2O$.

Nous allons présenter ici les résultats structuraux obtenus pour la première de ces phases: $Na_2Te-O_3.5H_2O$.

Partie expérimentale

La dissolution de dioxyde de tellure dans une solution concentrée d'hydroxyde de sodium, suivie d'une évaporation lente dans une atmosphère exempte de CO_2 conduit à la formation de monocristaux incolores de composition Na₂TeO₃.5H₂O (Lavut & Vorob'eva, 1960).

Le cristal choisi pour cette étude est un petit bâtonnet applati à base rectangulaire de dimensions $0,19 \times 0,22 \times 0,33$ mm et dont la direction d'allongement est l'axe *a*.

La collection de données a été enregistrée à l'aide d'un diffractomètre automatique, Enraf-Nonius CAD-4, pour la radiation $K\alpha$ du molybdène (monochromateur à lame de graphite) avec un balayage $\omega - \frac{4}{3}\theta$ (choisi après étude du profil des réflexions) et pour une valeur de sin $\theta/\lambda \le 0.7$ Å⁻¹. 1994 réflexions indépendantes, pour une valeur de $\sigma(I)/I \le 0.3$ (Susa & Steinfink, 1971), ont été conservées pour la détermination et l'affinement de la structure.

De part les dimensions relativement importantes du cristal utilisé, nous avons corrigé les facteurs de structure observés des erreurs dues à l'absorption à l'aide du programme *DATAPH* (Coppens, Leiserowitz & Rabinovich, 1965) bien que la valeur de μ soit faible $[\mu(Mo K\alpha) = 3,70 \text{ mm}^{-1}].$

Détermination et affinement de la structure

Une synthèse de Patterson tridimensionnelle permet de localiser l'atome lourd de tellure en position générale

0567-7408/79/061337-04\$01.00

8(f). Un affinement des coordonnées de cet atome suivi d'une synthèse de différence de Fourier tridimensionnelle permet de localiser l'ensemble des atomes indépendants de sodium et d'oxygène.

Un affinement isotrope de l'ensemble de ces atomes conduit à une valeur de R = 0,042. A ce stade les facteurs de structure observés sont corrigés des erreurs dues à l'absorption. Dans un affinement final, tenant compte d'un facteur d'extinction secondaire isotrope g = 0,22 (2) × 10⁻⁴ et des vibrations thermiques anisotropes des atomes, l'indice résiduel R converge vers la valeur 0,029.

A ce stade, nous avons effectué une synthèse de Fourier tridimensionnelle des différences ΔF pour contrôler l'affinement de la structure et préciser si possible la position des atomes d'hydrogène des molécules d'eau. L'accord entre les facteurs de structures observés et calculés est bon puisque la densité électronique maximum rencontrée est de l'ordre de 1 e Å⁻³. Aucun pic résiduel, dû à des corrections insuffisantes des F_o n'apparaît dans le voisinage immédiat des atomes lourds, par contre il existe un ensemble de pics, compris entre 0.6 et 1.0 e Å⁻³, au voisinage des atomes d'oxygène des molécules d'eau. Un calcul des F_c , tenant compte des dix atomes d'hydrogène ainsi localisés conduit à une valeur de R = 0.026. (Pour ces atomes, la valeur du facteur de température isotrope a été fixée à 4,0 Å².) Il est à remarquer qu'un autre pic plus diffus de densité électronique maximale voisine de

Tableau 1. Paramètres atomiques finals de Na₂TeO₃.-5H₂O ($\times 10^5$ pour Te, $\times 10^4$ pour Na et O, $\times 10^3$ pour H)

Pour tous les tableaux, les écarts types relatifs aux derniers chiffres significatifs sont donnés entre parenthèses.

Notation de B (Å²) Wyckoff Ζ х у 98062 (3) 17582 (1) 1,49(1) 8(f)15914(2)Te 4520 (2) 9789(1) 748(1) 2,46 (5) Na(1) 8(f)2500 1,83 (6) 9777 (3) Na(2) 4(e)5000 Na(3) 2500 0 4,89 (13) 4(c)2500 1245 (2) 290 (2) 9821 (4) 2,45 (9) O(1) 8(f)1227 (2) 1.90(7) O(2) 8(f)2121 (2) 7945 (4) 2104 (3) 1767 (4) 1291 (2) 2,46 (9) O(3) 8(f)2,56 (9) 1956 (5) 1686 (2) O(4) 8(f)4117 (3) 7492 (5) -13(2)2,79 (10) O(5) 5258 (3) 8(f)O(6) 4145 (3) 7598 (4) 1684 (2) 2,39 (9) 8(f)O(7) 8(f)6100(2) 9844 (4) 1554 (2) 2,24 (9) 9539 (4) 5(2) 2,37 (9) O(8) 2908 (3) 8(f)892 (10) 143 (4) 4,0 649 (5) H(1)8(f)141 (4) 4,0 H(2) 8(f)653 (5) 75 (10) 299 (5) 878 (10) 971 (4) 4,0 H(3) 8(f)4,0 251 (6) 912 (10) 29 (4) H(4) 8(f)165 (4) 4,0 H(5) 8(f)354 (5) 222 (10) 285 (9) 161 (4) 4,0 H(6) 451 (5) 8(f)959 (4) 4,0 510 (5) 681 (9) H(7)8(f)679 (8) 35 (3) 4,0 539 (4) H(8) 8(f)659 (8) 134(3)4,0 441 (4) H(9) 8(f)351(4) 749 (7) 162 (3) 4,0 H(10) 8(f)

0,5 e Å⁻³ a été relevé dans une région, près de l'atome de tellure(IV), où les considérations de symétrie et d'encombrement permettent de situer la paire libre Ecomme nous le discutons plus loin.

Le Tableau 1 rassemble les coordonnées atomiques finales.* Les facteurs de diffusion atomique utilisés sont ceux calculés par Doyle & Turner (1968) pour l'azote et l'oxygène, par Cromer & Waber (1965) pour le tellure et les *International Tables for X-ray Crystallography* (1962) pour l'hydrogène.

Description de la structure

La structure de Na₂TeO₃.5H₂O est essentiellement constituée de chaînes d'octaèdres Na(OH₂)₆, parallèles à l'axe c, chaînes reliées entre elles par des atomes de sodium en coordination plan carré déformé, NaO₂-(OH)₂, Fig. 1. Cette charpente tridimensionnelle détermine des tunnels dans lesquels sont localisés les anions discrets TeO₃²⁻, l'ensemble étant consolidé par un réseau de liaisons hydrogène.

Nous avons rassemblé dans le Tableau 2 les environnements, par les atomes d'oxygène, des trois atomes de sodium indépendants. On constate que si deux environnements sont octaédriques, le troisième est plan carré déformé puisque les atomes d'oxygène situés dans les deux directions octaédriques vacantes sont situés à plus de 3 Å $(2 \times 3,016 \text{ Å})$.

Les groupements octaédriques $Na(OH_2)_6$ sont reliés par mise en commun de faces et d'arêtes (Fig. 1) en

^{*} Les listes des facteurs de structure et des facteurs d'agitation thermique anisotrope ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 34323: 15 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Fig. 1. Projection, parallèlement à l'axe b, d'un quart de la maille, mettant en évidence l'existence de tunnels dans lesquels se situent les anions TeO²⁻₂ (ORTEP; Johnson, 1965).

chaînes parallèles à l'axe c à des cotes x, y: $(0, \frac{1}{2})$ et $(\frac{1}{2}, 0)$ ou 1). Les atomes de sodium, Na(3), tétracoordinés, relient ces chaînes parallèlement à l'axe a par la mise en commun de deux sommets. Seuls les atomes d'oxygène des molécules d'eau sont situés dans le voisinage direct des atomes de sodium à l'exception de l'atome O(3) qui représente d'ailleurs, par la liaison Te-O(3), l'interaction la plus forte entre l'atome de tellure(IV) et le reste de la structure.

Les autres interactions plus faibles sont dues aux liaisons hydrogène qui s'établissent avec les molécules d'eau. Le Tableau 3 rassemble les principales caractéristiques de ces molécules d'eau et les positions probables des liaisons hydrogène résultantes. Toutes ces liaisons hydrogène mettent en jeu les atomes d'oxygène des groupements TeO_3 [quatre avec O(1), quatre avec O(2) et seulement deux avec O(3) ce qui s'explique puisque cet atome d'oxygène O(3) est déjà situé dans le voisinage immédiat d'un cation Na⁺].

Deux des molécules d'eau, $O(4)H_2$ et $O(6)H_2$, renforcent la structure parallèlement à l'axe *a*, deux

Tableau	2.	Dis	tand	es	(Å)	et	ang	les	limites	(°)
caractéris	stiq	ues	de	l'er	iviron	nem	ent	des	atomes	de
				5	sodiur	n				

Na(1)-O(8) Na(1)-O(7) Na(1)-O(6)	2,383 (4) 2,391 (4)	$Na(1)-O(4^{i})$ $Na(1)-O(5^{ii})$ $Na(1)-O(5^{ii})$	2,416 (4) 2,436 (4)					
$\operatorname{Na}(1) = O(0)$	2,414 (4)	Na(1) = O(5)	2,457 (4)					
	81,4(1)	-101,5 (1) -175 5 (1)						
	100,2 (1)	-175,5(1)						
Na(2)–O(6)	2,355 (4)	$Na(2)-O(4^{iv})$	2,369 (4)					
$Na(2) - O(6^{iii})$	2,355 (4)	Na(2)-O(7)	2,371 (4)					
$Na(2)-O(4^{i})$	2,369 (4)	Na(2)–O(7 ⁱⁱⁱ)	2,371 (4)					
	82.8 (1	-98.0(1)						
177.6 (1)-179.1 (1)								
	<i>i</i> = ()							
Na(3)–O(8 ^v)	2,266 (3)	$Na(3) - O(5^{viii})$	3,016 (4)					
Na(3)–O(8 ^{vl})	2,266 (3)	$Na(3) - O(5^{ix})$	3,016 (4)					
Na(3) - O(3)	2,457 (4)							
$Na(3) - O(3^{vii})$	2,457 (4)							
82,2 (1)-97,8 (1)								
	180							
Codes de symétr	ie utilisės							
(i) $r 1 + v r$		$(\mathbf{v}\mathbf{i})$ 1 \mathbf{v} 3						
(i) $x, 1 + y, 2$ (ii) $1 - x - 2$		$(v_1) = \frac{1}{2} - \lambda, \frac{1}{2} - \lambda$	- y,2					
(ii) $1 - x, 2 - \frac{1}{2}$	y, —z	$(v_{11}) = \frac{1}{2} - \lambda, \frac{1}{$	-y, -2					
(11) $1 = x, y, \frac{1}{2}$	- 4	$(vm) = \frac{1}{2} + x$	$-\frac{1}{2} + y, z$					
(1v) = 1 - x, 1 + 1	$v_{1,3} - z$	(1x) = 1 - x	-v, -z					

(iv) $1 - x, 1 + y, \frac{1}{2} - z$ (v) x, -1 + y, z autres, $O(5)H_2$ et $O(7)H_2$, parallèlement à l'axe c, et la dernière $O(8)H_2$, parallèlement à l'axe b. Ainsi ce réseau de molécules d'eau constitue, avec l'atome d'oxygène O(3) du groupement TeO₃, l'ossature tridimensionnelle de la structure dans laquelle sont insérés d'une part les cations Na⁺ en sites octaédriques et plan carré et d'autre part les anions TeO₃²⁻ dans les tunnels.

Le Tableau 4 rassemble les distances et angles caractéristiques de cet anion TeO_3^{2-} . On constate que cet anion est relativement indépendant puisque, outre les trois atomes d'oxygène proches de l'atome de tellure(IV), aucun autre atome d'oxygène ne se situe à moins de 3,672 Å [O(6)]. En conséquence, aucune déformation importante de la pyramide TeO_3 n'est observée et les distances Te-O et les angles O-Te-Osont sensiblement égaux respectivement.

Les valeurs angulaires de ces groupements confirment une fois de plus l'activité stéréochimique importante de la paire libre qui doit se situer dans les tunnels définis à la Fig. 1. C'est d'ailleurs dans cette zone que l'on trouve les pics, X, de densité électronique maximale voisine de 0,5 e Å⁻³.

Discussion

Il ressort de cette étude, ainsi que des travaux récents de Johansson (1978) sur $K_2 TeO_3.3H_2O$ que les phases tellurites plus ou moins hydratées présentent des anions TeO_3^{2-} discrets relativement indépendants donc propices à une étude cristallochimique fine de leur structure électronique.

Ceci n'est pas le cas de la plupart des tellurites alcalins anhydres (Brown, 1974) où l'on constate, en particulier pour la coordination 3 du tellure(IV) par les

Tableau 4. Distances (Å) et angles (°) caractéristiquesde l'environnement de l'atome de tellure par les atomesd'oxygène

Te-O(1)	1,858 (3)	O(1)-Te- $O(2)$	99,3 (1)
Te-O(2)	1,862 (3)	$O(1) - Te - O(3^{i})$	99.5 (1)
Te-O(3 ⁱ)	1,850 (3)	$O(2)-Te-O(3^{i})$	99,8 (1)
Te-O(6 ⁱⁱ)	3,672 (4)		
Te–O(4 ⁱⁱ)	3,680 (4)		
Codes de syr	nétrie utilisés		
	(i) x , 1 + y , z	(ii) $\frac{1}{2} - x$, $-\frac{1}{2} + y$, $\frac{1}{2} - z$	

Tableau 3. Caractéristiques (Å et °) des liaisons hydrogène probables dans la phase Na, TeO, 5H,O

Atome	Atome H–O–H		∠H–O–H		I	00			∠0…0…0		
O(4)	H(5)–O(4)	0,80 (8)	O(4)-H(6)	0,87 (8)	114 (7)	O(3)–O(4)	2,710 (5)	O(4)–O(1 ⁱ)	2,820 (5)	O(3)-O(4)-O(1 ⁱ)	123,2 (2)
0(5)	H(7) = O(5)	0,86 (7)	O(5) - H(8)	0,82 (6)	105 (6)	$O(1^{"}) - O(5)$	2,782 (5)	O(5)-O(1')	2,964 (5)	$O(1^{"})-O(5)-O(1^{"})$	98,1 (2)
O(0)	H(9) = O(6)	0,90(6)	O(0) - H(10)	0,85 (0)	108 (5)	O(1) - O(6)	2, 747(5)	O(6) - O(2)	2,746 (5)	O(1) - O(6) - O(2)	124,1 (2)
0(8)	H(3) = O(3)	0.78(8)	O(7) = H(2) O(8) = H(4)	0,94(7) 0.84(7)	95(7)	$O(3^{m})=O(7)$	2,725 (4)	$O(7) = O(4^{10})$ $O(8) = O(2^{10})$	2,782 (4)	$O(3^{(1)}) - O(7) - O(4^{(1)})$	112,9(1)
Codes	Codes de symétrie utilisés: (i) $\frac{1}{2} + x$, $-\frac{1}{2} + y$, z (ii) $\frac{1}{2} - x$, $\frac{3}{2} - y$, $-z$ (iii) $\frac{1}{2} + x$, $\frac{1}{2} + y$, z (iv) $1 - x$, $1 - y$, $-z$									110,0(1)	

atomes d'oxygène, qu'il existe toujours un ou plusieurs atomes d'oxygène supplémentaire à une distance inférieure à 3 Å de l'atome de tellure(IV). Ces atomes supplémentaires induisent une déformation des distances et des angles de valence de la pyramide TeO₃. Dans les phases hydratées à une ou deux molécules d'eau: BaTeO₃. H₂O (Rottersten-Nielsen et al., 1971), Cu(NH₃)TeO₃. H₂O (Johansson & Lindqvist, 1977) et CuTeO₁.2H₂O (Effenberger, 1977) les atomes d'oxygène supplémentaires se situent au voisinage de 3 Å et n'induisent plus qu'une déformation angulaire de la pyramide TeO₃. Si le taux d'hydratation augmente comme c'est le cas pour K₃TeO₃.3H₂O (Johansson, 1978) et d'une manière encore plus prononcée pour Na, TeO₃. 5H₂O, les atomes d'oxygène les plus proches sont alors situés à plus de 3,6 Å, ce qui élimine toute interaction notable avec la pyramide TeO_3E qui admet alors un pseudo axe de symétrie ternaire passant par l'atome de tellure(IV) et le centre de gravité de la paire libre E.

Il faut aussi noter d'après nos résultats le faible encombrement créé par les atomes d'hydrogène des molécules d'eau autour de la région prévue pour cette possibilité.

L'ensemble de ces considérations nous permet de penser que ce sont dans ces phases hydratées que des études fines par diffraction de rayons X et de neutron semblent avoir le plus de chance d'aboutir dans la localisation de la paire libre E, encore jamais précisée à ce jour, si le caractère 'atome lourd' du tellure ne se révèle un handicap trop difficile à surmonter.

En prolongeant ce raisonnement, on peut penser qu'aucune 'coordination intermédiaire' de l'atome du tellure(IV) par les atomes d'oxygène (Brown, 1974) ne sera rencontrée pour des phases hydratées à anion TeO_3^{2-} à l'inverse des phases anhydres. Ce raisonnement peut d'ailleurs se généraliser aux autres éléments voisins du tellure(IV), pour des degrés d'oxydation mettant en jeu une paire libre et pour un environnement d'atomes d'oxygène ou de fluor. Cela se vérifie en particulier pour MgSeO₃. $6H_2O$ (Weiss, Wendling & Grandjean, 1966) où la pyramide SeO₃E admet un axe ternaire ($3 \times Se-O = 1,69$ Å et $3 \times O-Se = 100,7^\circ$).

Références

- ALCOCK, N. W. (1972). Adv. Inorg. Chem. Radiochem. 15, 1–58.
- BROWN, I. D. (1974). J. Solid State Chem. 11, 214-233.
- COPPENS, F., LEISEROWITZ, L. & RABINOVICH, D. (1965). Acta Cryst. 18, 1035–1038.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104-109.
- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24, 390-397.
- EFFENBERGER, H. (1977). Tschermaks Mineral. Petrogr. Mitt. 24, 287–298.
- GILLESPIE, R. J. (1972). *Molecular Geometry*. London: Van Nostrand Reinhold.
- GILLESPIE, R. J. & NYHOLM, R. S. (1957). Q. Rev. Chem. Soc. 11, 339-380.
- International Tables for X-ray Crystallography (1962). Tome III. Birmingham: Kynoch Press.
- JOHANSSON, G. (1978). Thèse, Univ. de Göteborg, Suède.
- JOHANSSON, G. & LINDQVIST, O. (1977). Acta Cryst. B33, 2418–2421.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- LAVUT, E. A. & VOROB'EVA, O. I. (1960). Russ. J. Inorg. Chem. 5(8), 1813-1818.
- PAULING, L. (1960). The Nature of the Chemical Bond, 3ème éd. Ithaca: Cornell Univ. Press.
- ROTTERSTEN-NIELSEN, B., GRØNBÆK HAZELL, R. & RASMUSSEN, S. E. (1971). Acta Chem. Scand. 25, 3037–3040.
- SEMENENKO, K. N. & LAVUT, E. A. (1960). Vestn. Mosk. Univ. Ser. 2 Khim. 15(6), 27–29.
- SUSA, K. & STEINFINK, H. (1971). J. Solid State Chem. 3, 75–82.
- VOROB'EVA, O. I. & LAVUT, E. A. (1958). Zh. Neorg. Khim. 3, 2006–2010.
- WEISS, R., WENDLING, J. P. & GRANDJEAN, D. (1966). Acta Cryst. 20, 563–566.